

## According to Application Made in:

H.S.S.T (High Speed Steel Tipped)

For softwood \& hardwood without glue lines.
STELLITE (Stellite Tipped)
For softwood \& hardwood without glue lines.
T.C.T (Tungsten Carbide-Tipped)

For hardwood, plywood, chipboard, MDF and other panel materials.

Our cutters are designed to conform with safety regulations, and are dynamically balanced.

To determine min. diameter on profiled cutters the calculation is: bore ["B") + 60mm (2-3/8") + (2 x profile depth) ("P"). As per table below.

| "B" | "P" |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{5}$ | $\mathbf{1 0}$ | $\mathbf{1 5}$ | 20 | 25 | 30 | 35 | $\mathbf{4 0}$ |  |
| $\mathbf{3 0}$ | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 |  |
| 35 | 105 | 115 | 125 | 135 | 145 | 155 | 165 | 175 |  |
| $\mathbf{4 0}$ | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |  |
| 50 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |  |
| 60 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | 200 |  |

"B"= Bore Diameter "P"= Profile Depth

| "B" | "P" |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{3 / 8 "}$ | $\mathbf{3 / 4 "}$ | $\mathbf{1 "}$ | $\mathbf{1 - 1 / 4 "}$ | $\mathbf{1 - 1 / 2 " ~}$ |
| $\mathbf{3 / 4 "}$ | $3-7 / 8 "$ | $4-5 / 8 "$ | $5-1 / 8 "$ | $5-5 / 8 "$ | $6-1 / 8 "$ |
| $\mathbf{1 - 1 / 4 "}$ | $4-3 / 8 "$ | $5-1 / 8 "$ | $5-5 / 8 "$ | $6-1 / 8 "$ | $6-5 / 8 "$ |
| $\mathbf{1 - 1 3 / 1 6 " ~}$ | $4-14 / 16 "$ | $5-7 / 16 "$ | $5-11 / 16 "$ | $5-15 / 16 "$ | $6-3 / 16 "$ |
| $\mathbf{2 "}$ | $5-1 / 8 "$ | $6-1 / 8 "$ | $6-5 / 8 "$ | $7-1 / 8 "$ | $7-5 / 8 "$ |

"B"= Bore Diameter "P"= Profile Depth

## Order Details

(1) Type of cutter as numbered.

For softwood \& hardwood without glue lines.
(2) Main dimensions in the following order: (diameter) $\times$ (cutting width) $\times$ (bore) $\times$ (number of teeth)
(3) Cutting materials H.S.S.T, STELLITE or T.C.T.
[4] R.P.M. of machine and rate of feed. Material to be cut, if possible supply sample.
(5) Type of cut: against feed direction or with feed direction.

## When Ordering Cutters with Profiles

Sketches fully dimensioned, DXF files or samples of profiles should be supplied. Details of side to table, fence side, and direction of feed should be given.


## Direction of Rotation:

Scheme I - II = Counter Clock Wise (CCW) Scheme III - IV = Clock Wise (CW)


## Example of Simple Profile - PA

## PB PROFILE CUTTERS - COMPLEX PROFILES



Example of Complex Profile - PB

- Type of wood or material to be cut
- Rotation
- Details of profile to table, fence side
- R.P.M. of machine
- Rate of feed
- Exact sketch of profile
- Possibly a wood sample or a DXF file
- Bore diameter
- Diameter of cutter



Example of Very Complex Profiles - PC

## DESIGN:

- With 2-3-4-6 cutting teeth, straight or with shear angle according to profile

WHEN ORDERING SPECIFY:

- Type of wood or material to be cut
- Rotation
- Details of profile to table, fence side
- R.P.M. of machine
- Rate of feed
- Exact sketch of profile
- Possibly a wood sample or a DXF file
- Bore diameter
- Diameter of cutter



## PI PROFILE CUTTERS - COMBINED PROFILES



## DESIGN:

- With 2-3-4 teeth interlocked. For staggered cut and spur action with shearing cut

WHEN ORDERING SPECIFY:

- Type of wood or material to be cut
- Rotation
- Details of profile to table, fence side
- R.P.M. of machine
- Rate of feed
- Exact sketch of profile
- Possibly a wood sample or a DXF file
- Bore diameter
- Diameter of cutter


Example of Combined Profiles - PI

DESIGN:

- Straight teeth, bevelled teeth, 4 or 6 teeth cutters
- Tungsten carbide cutting edges


## APPLICATION:

- On edgebanding machines
- For flush trimming, chamfering and profiling of wood-veneer and plastic edge bands


## FOR MACHINES:

- Brandt, Egurco, Franke, Homag, Homburg, IDM, IMA, IMEF, Manea, Ocmac, Olympic, Raiman, Salgo, Stefani.


## WHEN ORDERING SPECIFY:

- For which machine, and if bevelled, cutting edge degrees required.

SPECIAL PRODUCTION

| UNIT OF <br> MEASURE | DIAMETER | KERF | NO. <br> TEETH |
| :---: | :---: | :---: | :---: |
| INCH | $2-3 / 4 "$ to $4 "$ | $5 / 8 "$ to $1-3 / 8 "$ | 4 or 6 |
| $\mathbf{M M}$ | 70 to 100 | 15 to 35 | 4 or 6 |




## DESIGN:

- High tensile steel body with 8 or 12 rows of carbide teeth. Straight - staggered on a spiral progression
- Tungsten carbide cutting edges


## APPLICATION:

- Ideal for "easy chip flow" with fast feeding on solid wood and composite materials. Mainly used for roughing-out furniture components
- On shapers and copying machines

WHEN ORDERING SPECIFY:

- Cutter diameter
- Bore diameter
- Number of teeth
- Type of wood to cut
- Usable length of spindle

SPECIAL PRODUCTION

| UNIT OF MEASURE | DIAMETER |  |  |  | KERF | NO. <br> TEETH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INCH | $3-1 / 8^{\prime \prime}$ | $4 "$ | $4-3 / 4 "$ | $5-1 / 2^{\prime \prime}$ | $2-3 / 8^{\prime \prime}$ to 9" | 8 or 12 |
| MM | 80 | 100 | 120 | 140 | 60 to 230 | 8 or 12 |




DESIGN:

- 2 or 3 teeth, straight cut. Cutters work in pairs to produce single or multiple dowels
- H.S.S. Tipped cutting edges

APPLICATION:

- To produce single or multiple dowels
- On moulders
- All dowells produced must be guided at three points all the way (ILL.2). Guide must take hold of dowels immediately after leaving cutting edge area. (ILL.3)


Dowel Guide

(ILL.3)


## DIMENSIONS

| Diam. of dowel Ø mm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Splitting point Smm | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
| Pitch T mm | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12.5 | 13.5 | 14.5 | 15.5 | 16.5 | 17.5 |
| Square end A mm | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| Diam. $\varnothing \mathrm{D} \quad \mathrm{mm}$ | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 140 |
| Kerf B 1 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 20 | 21 | 22 | 23 | 23 | 25 | 26 |
| No. of dowels 2 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 31 | 33.5 | 35.5 | 37.5 | 39.5 | 41.5 | 43.5 |
| 3 | 19 | 22 | 25 | 28 | 31 | 34 | 37 | 42 | 46 | 49 | 52 | 55 | 58 | 61 |
| 4 | 23 | 27 | 31 | 35 | 39 | 43 | 47 | 53 | 58.5 | 62.5 | 66.5 | 70.5 | 74.5 | 78.5 |
| 5 | 27 | 32 | 37 | 42 | 47 | 52 | 57 | 64 | 71 | 76 | 81 | 86 | 91 | 96 |
| 6 | 31 | 37 | 43 | 49 | 55 | 61 | 67 | 75 | 83.5 | 89.5 | 95.5 | 101.5 | 107.5 | 113.5 |
| 7 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 86 | 96 | 103 | 110 | 117 | 124 | 131 |
| 8 | 39 | 47 | 55 | 63 | 71 | 79 | 87 | 97 | 108.5 | 116.5 | 124.5 | 132.5 | 140.5 | 148.5 |
| 9 | 43 | 52 | 61 | 70 | 79 | 88 | 97 | 108 | 121 | 130 | 139 | 148 |  |  |
| 10 | 47 | 57 | 67 | 77 | 87 | 97 | 107 | 119 | 133.5 | 143.5 |  |  |  |  |
| 11 | 51 | 62 | 73 | 84 | 95 | 106 | 117 | 130 | 146 |  |  |  |  |  |
| Diam. of dowel Ø mm | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| Splitting point Smm | 1.5 | 1.5 | 1.5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Pitch T mm | 18.5 | 19.5 | 20.5 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
| Square end $A \mathrm{~mm}$ | 5 | 5 | 5 | 5 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| Diam. $\varnothing \square \quad \mathrm{mm}$ | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 160 | 160 | 160 | 160 | 160 | 160 |
| Kerf B mm1 | 27 | 28 | 29 | 30 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
| No. of dowels 2 | 45.5 | 47.5 | 49.5 | 52 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 |
| 3 | 64 | 67 | 70 | 74 | 81 | 84 | 87 | 90 | 93 | 96 | 99 | 102 | 105 | 108 |
| 4 | 82.5 | 86.5 | 90.5 | 96 | 104 | 108 | 112 | 116 | 120 | 124 | 128 | 132 | 136 | 140 |
| 5 | 101 | 106 | 111 | 118 | 127 | 132 | 137 | 142 | 147 |  |  |  |  |  |
| 6 | 119.5 | 125.5 | 131.5 | 140 |  |  |  |  |  |  |  |  |  |  |

The minimum diameter indicated allows for centre bore of 40 mm max.
Other sizes available upon request.


DESIGN:

- With straight teeth. If required with alternating teeth or left-right + raker
- Tungsten carbide cutting edges


## APPLICATION:

- To make grooves in solid wood, with the grain and in uncoated panels
- Can be used in laminated materials if cutting with feed
- On shapers, double-end tenoners and moulders


| IMPERIAL |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| DIAMETER ØD 4-3/4" | DIAMETER ØD 5-1/2" | DIAMETER ØD 6-1/4" | KERF <br> B | $\begin{gathered} \mathrm{NO} . \\ \text { TEETH } \end{gathered}$ |
| PART NO. | PART NO. | PART NO. |  |  |
| 1121IC | 1127IC | 11213 IC | 3/16" | 6 |
| 1122IC | 1128IC | 11214IC | 1/4" | 6 |
| 1123IC | 1129IC | 11215IC | 5/16" | 6 |
| 1124IC | 11210IC | 11216IC | 3/8" | 6 |
| 1125IC | 11211 IC | 11217IC | 1/2" | 6 |
| 1126IC | 11212IC | 11218IC | 5/8" | 6 |

ød Bore: 1-1/4" Bore can be opened or bushed to spindle size of your machine. Maximum Bore size 50 mm (2")

Other sizes available upon request

| METRIC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| DIAMETER <br> ØD 120 | DIAMETER <br> ØD 140 | DIAMETER <br> ØD 160 | KERF <br> Bmm | NO. <br> TEETH |
| PART NO. | PART NO. | PART NO. |  |  |
| $\mathbf{1 1 2 1 M C}$ | 1128MC | $\mathbf{1 1 2 1 5 M C}$ | 5 | 6 |
| $\mathbf{1 1 2 2 M C}$ | $\mathbf{1 1 2 9 M C}$ | $\mathbf{1 1 2 1 6 M C}$ | 6 | 6 |
| $\mathbf{1 1 2 3 M C}$ | $\mathbf{1 1 2 1 0 M C}$ | $\mathbf{1 1 2 1 7 M C}$ | 8 | 6 |
| $\mathbf{1 1 2 4 M C}$ | $\mathbf{1 1 2 1 1 \mathbf { M C }}$ | $\mathbf{1 1 2 1 8 M C}$ | 10 | 6 |
| $\mathbf{1 1 2 5 M C}$ | $\mathbf{1 1 2 1 2 M C}$ | $\mathbf{1 1 2 1 9 M C}$ | 12 | 6 |
| $\mathbf{1 1 2 6 M C}$ | $\mathbf{1 1 2 1 3 M C}$ | $\mathbf{1 1 2 2 0 M C}$ | 14 | 6 |
| $\mathbf{1 1 2 7 M C}$ | $\mathbf{1 1 2 1 4 M C}$ | $\mathbf{1 1 2 2 1 M C}$ | 16 | 6 |

ød Bore: 1-1/4" Bore can be opened or bushed to spindle size of your machine. Maximum Bore size 50 mm (2")

Other sizes available upon request

DESIGN:

- With 4 teeth +4 spurs
- Tungsten carbide cutting edges

APPLICATION:

- For grooving solid wood, plywood, and laminated panels
- On Shapers, double-end tenoners, and moulders



| DIAMETER <br> $\varnothing D ~ 4-3 / 4 " ~$ | DIAMETER <br> $\varnothing D 5-1 / 2 "$ | DIAMETER <br> ØD 6-1/4" | KERF <br> $B$ | NO. <br> TEETH <br> AND |
| :---: | :---: | :---: | :---: | :---: |
| PART NO. | PART NO. | PART NO. |  | SPURS |
| 1131IC | 1137IC | 11313IC | $3 / 16^{\prime \prime}$ | $4+4$ |
| 1132IC | 1138IC | 11314IC | $1 / 4^{\prime \prime}$ | $4+4$ |
| 1133IC | 1139IC | 11315IC | $5 / 16^{\prime \prime}$ | $4+4$ |
| 1134IC | 11310IC | 11316IC | $3 / 8^{\prime \prime}$ | $4+4$ |
| 1135IC | 11311IC | 11317IC | $1 / 2^{\prime \prime}$ | $4+4$ |
| 1136IC | 11312IC | 11318IC | $5 / 8^{\prime \prime}$ | $4+4$ |

od Bore: 1-1/4" Bore can be opened or bushed to spindle size of your machine. Maximum Bore size 50 mm (2")

Other sizes available upon request

| METRIC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| DIAMETER ØD 120 | DIAMETER ØD 140 | $\begin{gathered} \text { DIAMETER } \\ \text { ØD } 160 \end{gathered}$ | KERF <br> Bmm | NO. TEETH AND SPURS |
| PART NO. | PART NO. | PART NO. |  |  |
| 1131 MC | 1138MC | 11315MC | 5 | 4+4 |
| 1132MC | 1139 MC | 11316MC | 6 | 4+4 |
| 1133 MC | 11310MC | 11317 MC | 8 | 4+4 |
| 1134 MC | 11311 MC | 11318MC | 10 | 4+4 |
| 1135MC | 11312MC | 11319MC | 12 | 4+4 |
| 1136 MC | 11313MC | 11320MC | 14 | 4+4 |
| 1137 MC | 11314MC | 11321 MC | 16 | 4+4 |

ød Bore: 1-1/4" Bore can be opened or bushed to spindle size of your machine. Maximum Bore size 50 mm (2")

Other sizes available upon request


113 L LAMELLO - GROOVE CUTTER


| PART <br> NO. | DIAM. <br> $\varnothing D ~ m m$ | KERF <br> $B \mathrm{~mm}$ | BORE <br> $\varnothing d \mathrm{~mm}$ | NO. <br> TEETH | NO. <br> SPURS | RPM <br> MIN.-MAX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 1 3 L}$ | 100 | 3.95 | 22 | 2 | $2+2$ | $7600-13400$ |



DESIGN:

- Set of cutters with 4 teeth +4 spurs, each adjustable by a set of spacers
- Tungsten carbide cutting edges


## APPLICATION:

- For chip-free grooving of plywood, chipboard and solid wood with and across the grain
- In uncoated and laminated panel materials with feed
- On shapers, moulders and double-end tenoners


| $\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$ | $\begin{gathered} \text { DIAM. } \\ \varnothing D \end{gathered}$ | $\begin{gathered} \text { KERF } \\ \text { B } \end{gathered}$ | BORE ød | TEETH/SPURS | GROOVE DEPTH <br> t max | RPM <br> MIN.-MAX. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1141 MC | $\begin{aligned} & 140 \mathrm{~mm} \\ & 5-1 / 2 " \end{aligned}$ | $\begin{gathered} 1.8 \text { to } 3.4 \mathrm{~mm} \\ 5 / 64 " \text { to } 9 / 64 " \end{gathered}$ | $\begin{gathered} 31.75 \mathrm{~mm} \\ 1-1 / 4 " \end{gathered}$ | $4 T+4 S$ | $\begin{gathered} 15 \mathrm{~mm} \\ 19 / 32 " \end{gathered}$ | 5500-9500 |
| 1142MC | $\begin{aligned} & 140 \mathrm{~mm} \\ & 5-1 / 2 " \end{aligned}$ | $\begin{gathered} 2.5 \text { to } 4.8 \mathrm{~mm} \\ 3 / 32 \text { to } 3 / 16 " \end{gathered}$ | $\begin{gathered} 31.75 \mathrm{~mm} \\ 1-1 / 4 " \end{gathered}$ | $4 T+4 S$ | $\begin{gathered} 15 \mathrm{~mm} \\ 19 / 32 " \end{gathered}$ | 5500-9500 |
| 1143MC | $\begin{gathered} 160 \mathrm{~mm} \\ 6-1 / 4^{\prime \prime} \end{gathered}$ | 4.0 to 7.5 mm 5/32" to $19 / 64 "$ | $\begin{gathered} 31.75 \mathrm{~mm} \\ 1-1 / 4 " \end{gathered}$ | $4 T+4 S$ | $\begin{aligned} & 35 \mathrm{~mm} \\ & 1-3 / 8 " \end{aligned}$ | 5100-9000 |
| 1144MC | $\begin{aligned} & 160 \mathrm{~mm} \\ & 6-1 / 4^{\prime \prime} \end{aligned}$ | $\begin{gathered} 7.5 \text { to } 14 \mathrm{~mm} \\ 19 / 64 " \text { to } 9 / 16 " \end{gathered}$ | $\begin{gathered} 31.75 \mathrm{~mm} \\ 1-1 / 4 " \end{gathered}$ | $4 T+4 S$ | $\begin{aligned} & 35 \mathrm{~mm} \\ & 1-3 / 8 " \end{aligned}$ | 5100-9000 |
| 1145MC | $\begin{aligned} & 160 \mathrm{~mm} \\ & 6-1 / 4^{\prime \prime} \end{aligned}$ | $\begin{gathered} 10 \text { to } 19 \mathrm{~mm} \\ 13 / 32 \text { to } 3 / 4 " \end{gathered}$ | $\begin{gathered} 31.75 \mathrm{~mm} \\ 1-1 / 4 " \\ \hline \end{gathered}$ | $4 T+4 S$ | $\begin{gathered} 40 \mathrm{~mm} \\ 1-9 / 16 " \end{gathered}$ | 4800-8300 |
| 1146MC | $\begin{aligned} & 180 \mathrm{~mm} \\ & 7-3 / 32 " \end{aligned}$ | 4.0 to 7.5 mm 5/32" to 19/64" | $\begin{gathered} 31.75 \mathrm{~mm} \\ 1-1 / 4 " \end{gathered}$ | $4 T+4 S$ | $\begin{gathered} \text { 50mm } \\ \text { 2" } \end{gathered}$ | 4200-7400 |
| 1147 MC | $\begin{aligned} & 180 \mathrm{~mm} \\ & 7-3 / 32 " \end{aligned}$ | $\begin{gathered} 7.5 \text { to } 14 \mathrm{~mm} \\ 19 / 64 \text { to } 9 / 16 " \end{gathered}$ | $\begin{gathered} 31.75 \mathrm{~mm} \\ 1-1 / 4 " \end{gathered}$ | $4 T+4 S$ | $\begin{gathered} \text { 50mm } \\ 2 " \end{gathered}$ | 4200-7400 |
| 1148MC | $\begin{aligned} & 180 \mathrm{~mm} \\ & 7-3 / 32 " \end{aligned}$ | $\begin{gathered} 10 \text { to } 19 \mathrm{~mm} \\ 13 / 32 \text { " to } 3 / 4 " \end{gathered}$ | $\begin{gathered} 31.75 \mathrm{~mm} \\ 1-1 / 4 " \end{gathered}$ | $4 T+4 S$ | $\begin{gathered} \text { 50mm } \\ 2 " \end{gathered}$ | 4200-7400 |

Bore can be opened or bushed to spindle size of your machine. Maximum Bore size 50 mm (2")


## DESIGN:

- Set of 3 or 4 interlocked cutters adjustable by spacers and shims. Outside cutters each with 2 raker teeth and 2 spurs on outside at negative rake. Middle cutters with 4 raker teeth. Chip limiter for manual feed. Cuts grooves sharp and clean, no tear-outs
- Tungsten carbide cutting edges


## APPLICATION:

- For chip-free grooving of plywood, chipboard and solid wood with and against the grain
- In uncoated and laminated panel materials with feed
- On shapers, moulders and double-end tenoners


1151MC


1152MC

| PART NO. | $\begin{gathered} \text { DIAM. } \\ \varnothing D \end{gathered}$ | $\begin{gathered} \text { KERF } \\ \text { B } \end{gathered}$ | $\begin{gathered} \text { BORE } \\ \text { ød } \end{gathered}$ | TEETH/SPURS | GROOVE DEPTH <br> t max | RPM MIN.-MAX. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1151 MC | $\begin{gathered} 150 \mathrm{~mm} \\ 6 " \end{gathered}$ | 7.5 to 28 mm 19/64" to 1-7/64" | $\begin{gathered} 31.75 \mathrm{~mm} \\ 1-1 / 4 " \end{gathered}$ | $4 T+4 T+4 S$ | $\begin{gathered} 30 \mathrm{~mm} \\ 1-3 / 16 " \end{gathered}$ | 5100-8900 |
| 1152MC | $\begin{gathered} 220 \mathrm{~mm} \\ 8-5 / 8 " \end{gathered}$ | $\begin{gathered} 5 \text { to } 30 \mathrm{~mm} \\ 3 / 16^{\prime \prime} \text { to } 1-3 / 16 " \end{gathered}$ | $\begin{gathered} 31.75 \mathrm{~mm} \\ 1-1 / 4 " \end{gathered}$ | $4 T+4 T+4 S$ | $\begin{gathered} 40 \mathrm{~mm} \\ 1-9 / 16 " \end{gathered}$ | 3500-6000 |

Bore can be opened or bushed to spindle size of your machine. Maximum Bore size 50 mm (2")


## DESIGN:

- Set of 3 cutters ( 1 groover +2 cutters).

Each with 3 teeth, and spacers to obtain profiles

- Tungsten carbide cutting edges


## APPLICATION:

- For producing tongue and groove shapes on plywood and solid wood
- On shapers

| PART <br> NO. | DIAM. <br> $\varnothing D$ | WOOD <br> THICKNESS | BORE <br> ød | NO. <br> TEETH |
| :---: | :---: | :---: | :---: | :---: |
| 139IC | $4^{\prime \prime}$ | $3 / 4^{\prime \prime}$ to $1-1 / 8^{\prime \prime}$ | $1-1 / 4^{\prime \prime}$ | $3+3+3$ |

Bore can be opened or bushed to spindle size of your machine.


## DESIGN:

- With 3 teeth, straight
- Tungsten carbide cutting edges

APPLICATION:

- For cutting mitre lock joints in solid wood and panel materials
- On shapers

| PART <br> NO. | DIAM. <br> $\varnothing D$ | WOOD <br> THICKNESS | BORE <br> ød | NO. <br> TEETH |
| :---: | :---: | :---: | :---: | :---: |
| 135IC | $4-3 / 4^{\prime \prime}$ | $3 / 8^{\prime \prime}$ to $3 / 4^{\prime \prime}$ | $1-1 / 4^{\prime \prime}$ | 3 |

Bore can be opened or bushed to spindle size of your machine.



| PART <br> NO. | DIAM. <br> $\varnothing D$ | RADIUS <br> $R$ | BORE <br> $\varnothing d$ | NO. <br> TEETH |
| :---: | :---: | :---: | :---: | :---: |
| 1491IC | $4 "$ | $1 / 4^{\prime \prime}$ | $1-1 / 4^{\prime \prime}$ | 3 |
| 1492IC | $4^{\prime \prime}$ | $3 / 8^{\prime \prime}$ | $1-1 / 4^{\prime \prime}$ | 3 |
| 1493IC | $4 "$ | $1 / 2^{\prime \prime}$ | $1-1 / 4^{\prime \prime}$ | 3 |
| 1494IC | $4-3 / 4 "$ | $3 / 4^{\prime \prime}$ | $1-1 / 4 "$ | 3 |

Bore can be opened or bushed to spindle size of your machine.

## SPECIAL PRODUCTION:

- For all other sizes see Cutters Special Profiles "PA" on page B2


## 150 HALF ROUND CUTTERS



DESIGN:

- With 3 straight teeth
- Tungsten carbide cutting edges


## APPLICATION:

- To cut half round shapes in solid wood and panel materials
- On shapers

| PART <br> NO. | DIAM. <br> $\varnothing D$ | RADIUS <br> $R$ | OPENING | BORE <br> $\varnothing d$ | NO. <br> TEETH |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1501IC | $4 "$ | $1 / 8^{\prime \prime}$ | $1 / 4^{\prime \prime}$ | $1-1 / 4^{\prime \prime}$ | 3 |
| 1502IC | $4 "$ | $1 / 4^{\prime \prime}$ | $1 / 2^{\prime \prime}$ | $1-1 / 4^{\prime \prime}$ | 3 |
| 1503IC | $4-1 / 2^{\prime \prime}$ | $3 / 8^{\prime \prime}$ | $3 / 4^{\prime \prime}$ | $1-1 / 4^{\prime \prime}$ | 3 |
| 1504IC | $4-1 / 2^{\prime \prime}$ | $1 / 2^{\prime \prime}$ | $1 "$ | $1-1 / 4^{\prime \prime}$ | 3 |

Bore can be opened or bushed to spindle size of your machine.

## SPECIAL PRODUCTION:

- For all other sizes see Cutters Special Profiles "PB" on page B2


DESIGN:

- With 4 teeth, straight
- Tungsten carbide cutting edges

APPLICATION:

- For cutting coves in solid wood and panel materials
- On shapers

| PART <br> NO. | DIAM. <br> $Ø D$ | RADIUS | KERF <br> $B$ | BORE <br> $\varnothing d$ | NO. <br> TEETH |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1516IC | $4 "$ | $3 / 8 "$ | $3 / 4 "$ | $1-1 / 4 "$ | 4 |
| 1518IC | $4 "$ | $1 / 2^{\prime \prime}$ | $1 "$ | $1-1 / 4 "$ | 4 |

Bore can be opened or bushed to spindle size of your machine.

## SPECIAL PRODUCTION:

- For all other sizes see Cutters Special Profiles "PA" on page B2



## 154 1/4" AND 1/2" QUARTER ROUND CUTTER



DESIGN:

- With 3 teeth, straight
- Tungsten carbide cutting edges

APPLICATION:

- To make $1 / 4$ " or $1 / 2^{\prime \prime}$ quarter round shapes in solid wood and panel materials
- On shapers

| PART <br> NO. | DIAM. <br> $\varnothing D$ | KERF <br> $B$ | BORE <br> ød | NO. <br> TEETH |
| :---: | :---: | :---: | :---: | :---: |
| 154IC | $4 "$ | $1 "$ | $1-1 / 4 "$ | 3 |

Bore can be opened or bushed to spindle size of your machine.
SPECIAL PRODUCTION:

- For all other sizes see Cutters Special Profiles "PB" on page B2


DESIGN:

- Set of 4 cutters and spacers
- With 3 teeth
- Tungsten carbide cutting edges

APPLICATION:

- To cut stile and rail for producing solid wood cabinet doors.
- On shapers

| PART <br> NO. | DIAM. <br> $\varnothing D$ | WOOD <br> THICKNESS | BORE <br> $\varnothing d$ | NO. <br> TEETH | PROFILE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 177AI | $4 "$ | $3 / 4 "$ TO 1 | $1-1 / 4^{\prime \prime}$ | $3+3$ | A |
| 177 BI | $4 "$ | $3 / 4 "$ TO 1 | $1-1 / 4^{\prime \prime}$ | $3+3$ | B |

Bore can be opened or bushed to spindle size of your machine.


PROFILE A



DESIGN:

- With 3 teeth and shear angle for optimum quality of cut
- Tungsten carbide cutting edges

APPLICATION:

- For raised panel cutting in solid wood and MDF panels
- On shapers

| PART NO. | PROFILE <br> NO. | DIAM. <br> $\varnothing D$ | KERF <br> $B$ | BORE <br> $\varnothing d$ | NO. <br> TEETH |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1681IC | Profile No. 1 | $6 "$ | $5 / 8 "$ | $1-1 / 4 "$ | 3 |
| 1682IC | Profile No. 2 | $6 "$ | $5 / 8 "$ | $1-1 / 4 "$ | 3 |
| 1693IC | Profile No. 3 | $5-3 / 4 "$ | $5 / 8 "$ | $1-1 / 4 "$ | 3 |
| 1694IC | Profile No. 4 | $5-3 / 4 "$ | $5 / 8 "$ | $1-1 / 4 "$ | 3 |
| 1695IC | Profile No. 5 | $5-3 / 4 "$ | $5 / 8 "$ | $1-1 / 4 "$ | 3 |
| 1696IC | Profile No. 6 | $5-3 / 4 "$ | $5 / 8 "$ | $1-1 / 4 "$ | 3 |

Bore can be opened or bushed to spindle size of your machine.

PROFILE No. 1


PROFILE No. 2


scale 1:1

PROFILE No. 3

PROFILE No. 4


PROFILE No. 5


PROFILE No. 6



## DESIGN:

- Set of 5 cutters with 3 teeth interlocked and set of spacers
- Tungsten carbide cutting edges


## APPLICATION:

- To cut stile and rail in solid wood for producing entry and passage doors
- On shapers


Profile A


Profile B

| PART <br> NO. | DIAM. <br> $\varnothing D$ | WOOD <br> THICKNESS | BORE <br> $\varnothing d$ | NO. <br> TEETH | PROFILE | RPM <br> MIN.-MAX. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 7 8 A I}$ | $4 "$ | $1-3 / 8^{\prime \prime}\left(1 / 4^{\prime \prime}\right.$ Tenon $)$ | $1-1 / 4^{\prime \prime}$ | 3 | A | $7500-12500$ |
| $\mathbf{1 7 8 B I}$ | $4 "$ | $1-3 / 8^{\prime \prime}\left(1 / 4^{\prime \prime}\right.$ Tenon $)$ | $1-1 / 4^{\prime \prime}$ | 3 | B | $7500-12500$ |
| $\mathbf{1 7 8 C I}$ | $4 "$ | $1-3 / 8^{\prime \prime}\left(1 / 4^{\prime \prime}\right.$ Tenon $)$ | $1-1 / 4^{\prime \prime}$ | 3 | $C$ | $7500-12500$ |


| PART <br> NO. | DIAM. <br> $\varnothing D$ | WOOD <br> THICKNESS | BORE <br> $\varnothing d$ | NO. <br> TEETH | PROFILE | RPM <br> MIN.-MAX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 7 9 A I}$ | $4^{\prime \prime}$ | $1-3 / 4^{\prime \prime}\left(3 / 8^{\prime \prime}\right.$ Tenon $)$ | $1-1 / 4^{\prime \prime}$ | 3 | A | $7500-12500$ |
| $\mathbf{1 7 9 B I}$ | $4^{\prime \prime}$ | $1-3 / 4^{\prime \prime}\left(3 / 8^{\prime \prime}\right.$ Tenon $)$ | $1-1 / 4^{\prime \prime}$ | 3 | B | $7500-12500$ |
| $\mathbf{1 7 9 C I}$ | $4^{\prime \prime}$ | $1-3 / 4^{\prime \prime}\left(3 / 8^{\prime \prime}\right.$ Tenon $)$ | $1-1 / 4^{\prime \prime}$ | 3 | C | $7500-12500$ |

## DESIGN:

- Each set consists of 4 cutters with 3 teeth and 3 spacers engraved with no.'s 1,2,3
- Tungsten carbide cutting edges

APPLICATION:

- To cut all standard moulding profiles, 4 different interlocking joints and anything else you can think of
- On shapers

|  | PART <br> NO. | DIAM. <br> $\varnothing D$ | BORE <br> ød | NO. <br> TEETH |
| :--- | :---: | :---: | :---: | :---: |
| Small Set | 1821IC | $4-1 / 8^{\prime \prime}$ | $3 / 4 "$ | 3 |
| Large Set | 1822 IC | $5-1 / 2 "$ | $1-1 / 4 "$ | 3 |

Bore can be opened or bushed to spindle size of your machine.

Tool No. 1

Tool No. 2

Tool No. 3

Tool No. 4


Spacer No. 5


Spacer No. 7


ONE PASS


TWO PASSES TURN WOOD OVER


ONE PASS


TWO PASSES TURN WOOD OVER



TWO PASSES TURN WOOD OVER


TVO PASSES TURN WOOD OVER


TWO PASSES TURN WOOD OVER


TVO PASSES TURN WOOD OVER



TWO PASSES TURN WOOD OVER


ONE PASS


ONE PASS


FOUR PASSES TURN WOOD OVER


FOUR PASSES TURN WOOD OVER



FOUR PASSES TURN WOOD OVER


TWO PASSES TURN WOOD OVER


TWO PASSES TURN WOOD OVER

(43)

FOUR PASSES TURN WOOD OVER


TVO PASSES


FOUR PASSES TURN WOOD OVER

